

MONITORAGGIO DELLA QUALITÀ DELLE ACQUE DESTINATE ALLA VITA DEI PESCI

(art. 85 D. Lgs. 152/2006 e s.m.i.)
ANNO 2017

SINTESI

Il D.Lgs. 152/06 individua, tra le acque superficiali a specifica destinazione funzionale, le "acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci". La presente relazione riporta la sintesi del lavoro di monitoraggio svolto durante l'anno 2017. Tale monitoraggio prevede il campionamento effettuato nelle acque dolci superficiali idonee alla vita dei pesci salmonicoli e ciprinicoli nelle stazioni di rilevamento e successiva analisi batteriologica e chimica dei campioni prelevati. In base alla conformità ai limiti previsti dalla norma (art.85 D.Lgs.152/06) è valutata la conformità alla classificazione delle acque destinate alla vita dei pesci per il 2017: soltanto la stazione "Fiume Anapo" è risultata essere conforme. In particolare, le stazioni "Fiume Platani – 170", "Fiume Platani – 49", "Ciane", "Alcantara" e "Simeto" risultano, per il 2017, non conformi per il superamento dei valori imperativi di: Temperatura, Materiale in sospensione, Ossigeno disciolto, Ammoniaca non ionizzata, Ammoniaca totale, Nitrito, Cloro totale, Zinco, così come indicati nella tabella 1/B del D.Lgs. n.152/06 e s.m.i.

Fiume Alcantara. (Foto della Struttura Territoriale di Messina)

Autori:

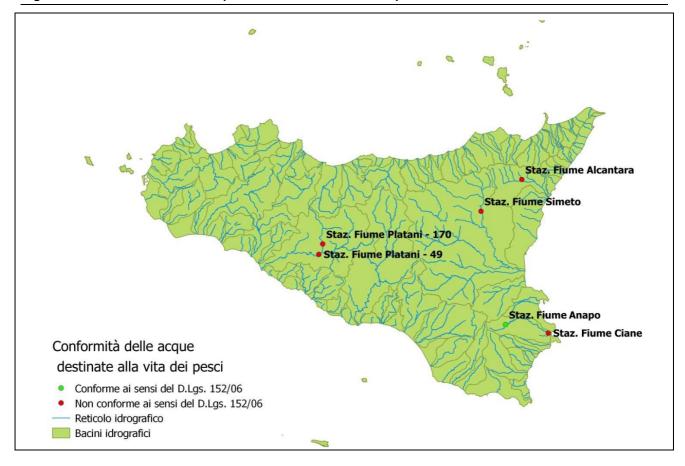
Anna Maria Abita ARPA Sicilia - Direttore ST 2 "Monitoraggi Ambientali"

Domenico Giovanni Galvano ARPA Sicilia - Funzionario ST 2.1 "Monitoraggi Ambientali - U.O. Ambiente Idrico"

Si ringrazia il personale delle Strutture territoriali di ARPA Sicilia per le attività di campionamento ed analisi su cui si basa la presente relazione

SINTESI

Il D.Lgs. 152/06 indica, tra le acque superficiali a specifica destinazione funzionale, le "acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci". La presente relazione riporta la sintesi del lavoro di monitoraggio effettuato durante l'anno 2017. Tale monitoraggio prevede il campionamento realizzato nelle acque dolci superficiali idonee alla vita dei pesci salmonicoli e ciprinicoli nelle stazioni di rilevamento e la successiva analisi batteriologica e chimica dei campioni prelevati.


Sulla base della conformità ai limiti previsti dalla norma (art.85 D.Lgs. 152/06) viene valutata la conformità alla classificazione delle acque destinate alla vita dei pesci per il 2017: soltanto la stazione "Fiume Anapo" è risultata essere conforme.

In particolare, le stazioni "Fiume Platani - 170", "Fiume Platani - 49", "Ciane", "Alcantara" e "Simeto", risultano per il 2017 non conformi per il superamento dei valori imperativi di Temperatura, Materiale in sospensione, Ossigeno disciolto, Ammoniaca non ionizzata, Ammoniaca totale, Nitrito, Cloro residuo totale, Zinco, così come indicati nella tabella 1/B del D.Lgs.vo n.152/06 e s.m.i.

Nella Tabella 3 si riporta la conformità, ai sensi della tabella 1/B dell'All. 2 al D.Lgs. 152/06, verificata negli anni 2011-2017, dove sono riportati inoltre i parametri risultati non conformi. Nella figura 1 si riporta l'ubicazione della rete di monitoraggio con la conformità valutata dai dati 2017.

Figura 1 - Conformità delle acque destinate alla vita dei pesci. Dati 2017

QUADRO NORMATIVO

Il punto 1 della Sezione B dell'Allegato 2 del D.Lgs. 152/06 prevede:

- il rispetto del 95% dei valori imperativi dei parametri pH, BOD5, ammoniaca indissociata e totale, nitriti, cloro residuo totale, zinco totale e rame disciolto (quando la frequenza di campionamento è inferiore ad un prelievo al mese i valori devono essere conformi al 100% dei campioni prelevati). A tale proposito si precisa che effettuando un campionamento mensile la non conformità di un solo dato corrisponde all'8%, pertanto anche rispettando la frequenza prevista, il rispetto di 11 valori su 12 corrisponde al 92% (inferiore al rispetto del 95% dei valori imperativi);
- il rispetto dei valori dei parametri temperatura e ossigeno disciolto, secondo la tab. 1/B;
- il rispetto della concentrazione media delle materie in sospensione.

RETE DI MONITORAGGIO

Nel territorio regionale, per la determinazione della conformità dei corpi idrici idonei alla vita dei pesci, sono stati identificati 6 corpi idrici con il DM 19/11/97, parzialmente ridefiniti nel Piano di Gestione delle Acque del 2010 e riportati nella tabella 1. Riguardo a ciò si ritiene opportuno, dopo oltre un decennio dall'identificazione della rete di monitoraggio, pensare ad un riesame complessivo delle stazioni di monitoraggio dei corpi idrici idonei alla vita dei pesci. Il tutto, alla luce delle condizioni di non conformità di alcune stazioni che perdurano negli anni, verificate sin dai primi campionamenti attuati da ARPA Sicilia durante gli anni di monitoraggio. Pertanto, sarebbe necessario effettuare un studio di approfondimento per verificare quali corpi idrici presentano habitat idonei ad accogliere comunità ittiche di salmonidi e ciprinidi.

Tabella 1 - Corpi idrici idonei alla vita dei pesci

N°	Codice Stazione	Provincia	Corpo Idrico	Coordinate Stazione (UTM ED50)		Idonee alla vita della specie
				E	Ν	
170	R190630007	AG	Fiume Platani	384.482	4.155.706	Salmonicole
49	R190630003	AG	Fiume Platani	382.082	4.149.301	Ciprinicole
89	R1909100001	SR	Fiume Anapo	496.205	4.106.320	Ciprinicole
91	R1909100003	SR	Fiume Ciane	522.322	4.101.057	Ciprinicole
101	R190940003	СТ	Fiume Simeto	481.215	4.175.753	Salmonicole
118	R190600002	ME	Fiume Alcantara	506.165	4.195.186	Salmonicole

VALUTAZIONE DI CONFORMITA' - DATI 2017

La tabella 2 riporta la valutazione, per l'anno 2017, della conformità delle "acque superficiali destinate alla vita dei pesci" rispetto a quanto riportato al punto 1 della Sezione B dell'Allegato 2 del D.Lgs. 152/06. Si precisa che nella stazione "Fiume Simeto - 101" non sono stati effettuati i campionamenti nei mesi di luglio, agosto e settembre 2017, poiché il corpo idrico era in asciutta.

Si precisa che i superamenti della temperatura, rilevati quasi sempre nei mesi estivi, sebbene potrebbero non essere causati da pressioni antropiche, sono stati considerati quale causa determinante di non conformità, in coerenza con la norma, in quanto ostativi alla vita dei pesci, determinando presumibilmente habitat non idonei ad accogliere comunità ittiche di salmonidi e ciprinidi.

Tabella 2 - Dati 2017

PR	N°	STAZIONE	Idonee alla vita della specie	Numero campionamenti	% Parametri determinati rispetto tab 1/B D.Lgs. 152/06 nel 2017	% SUPER. VG 2017	% SUPER. VI 2017	Conformità D.Lgs.152/06
AG	170	Fiume Platani	salmonicole	12	21/21 (100%)	$33\% \ BOD_5 - 25\%$ $P_{tot} - 83\% \ NO_2 -$ $33\% \ NH_3 \ non$ $ionizz - 50\% \ NH_3$ $tot 8\%$ $Tensioattivi$ $anionici$	33% Tmax - 8% NO $_2$ - 33% NH $_3$ non ionizz - 17% NH $_3$ tot.	NO
AG	49	Fiume Platani	ciprinicole	12	21/21 (100%)	83% NO ₂ - 8 NH ₃ non ionizz - $8%$ NH ₃ tot.	$25\% \text{ NH}_3 \text{ non}$ ionizz - 17% NH $_3$ tot.	NO
SR	89	Fiume Anapo	ciprinicole	12	18/21 (85%)	12% P _{tot}	/	SI
SR	91	Fiume Ciane	ciprinicole	12	18/21 (85%)	33% P _{tot} - 9 % NO ₂ - 10% NH ₃ tot	100% (O ₂)	NO
СТ	101	Fiume Simeto	salmonicole	9	21/21 (100%)	11% pH – 25% P _{tot} - 33 % NO ₂ – 11% NH ₃ tot – 11%Hg	11% Tmax	NO
ME	118	Fiume Alcantara	salmonicole	12	21/21 (100%)	$83\% \ P_{tot} - 73 \% \\ NO_2 - 8 \% \ NH_3 \\ non \ ioniz - 42\% \\ NH_3 \ tot - 10\% \ Cd - \\ 22\% \ Hg$	V.M. materiale in sospensione 8% Zn91%Cl _{tot}	NO

Legenda: VI = valori Imperativi; VG = valori Guida; V.M. = valore medio

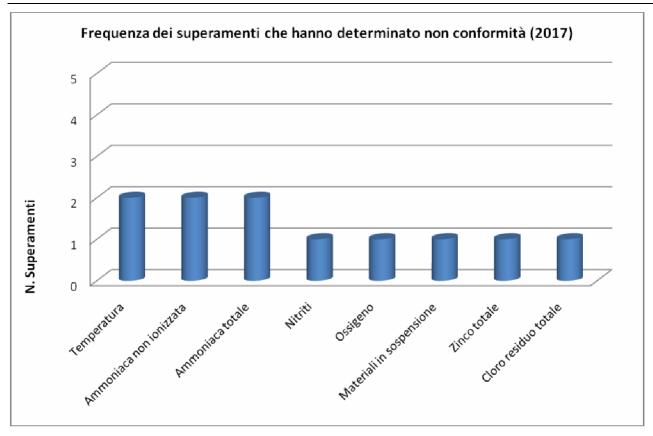
Nell'anno 2017 solamente la stazione "Fiume Anapo" è risultata conforme. Inoltre, così come nel periodo 2014-2016, anche nel 2017 nella stazione 170 del fiume Platani si sono rilevate concentrazioni di O_2 disciolto inferiori a 6 mg/l (acque per Salmonidi) anche se, tuttavia, soltanto nel campionamento effettuato nel mese di settembre 2017.

Nella stazione "Fiume Alcantara – 118", non conforme nel periodo 2011-2017 (ad eccezione dell'unica conformità registrata nell'anno di monitoraggio 2013) si è riscontrato, nel 2017, il superamento del valore imperativo di Zinco per un valore registrato pari a "1137 μ g/L Zn" (ossia più di tre volte il valore imperativo per tale parametro, fissato dalla norma pari a "300 μ g/L Zn").

Nella stazione "Fiume Simeto - 101", conforme nel 2015 ma non conforme sia nel 2016 e sia nel 2017, si è riscontrato il solo superamento del valore imperativo di Temperatura massima.

Per tutte le altre stazioni ("Fiume Ciane - 91", "Fiume Platani - 49", "Fiume Platani - 170") permangono storicamente, per il periodo 2011-2017, le condizioni di non conformità così come descritte in tabella 3, che riporta la conformità e i parametri risultati non conformi negli anni 2011-2017.

Pertanto si registra nel territorio siciliano una situazione stabilmente non conforme, relativamente alla qualità dello stato dei corpi idrici idonei alla vita dei pesci.


Risultano, infatti, non conformi tutte le stazioni sempre ad eccezione di quella del fiume "Anapo", analogamente a quanto già riscontrato negli anni precedenti.

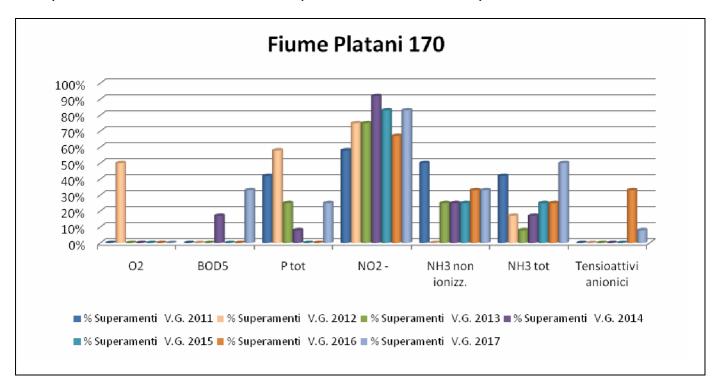
I parametri che determinano la non conformità sono principalmente: "Temperatura", "Nitriti", "Ammoniaca non ionizzata"; "Ammoniaca totale"; "Ossigeno"; "Materiali in sospensione"; "Zinco totale"; "Cloro residuo totale".

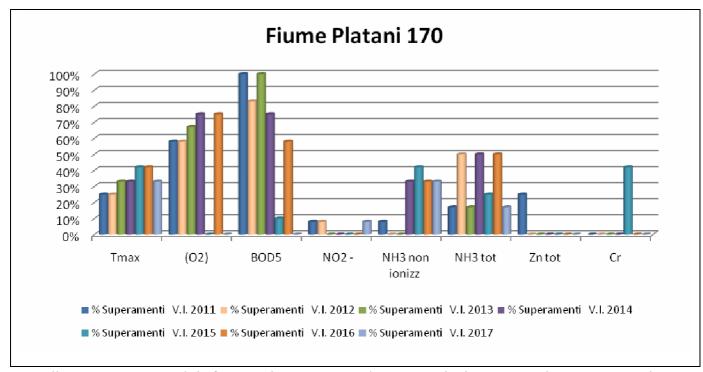
Il grafico seguente riporta la frequenza dei superamenti nel 2017 che hanno determinato non conformità.

Figura 2 - Acque superficiali destinate alla vita dei pesci. Frequenza dei superamenti che hanno determinato non conformità (2017)

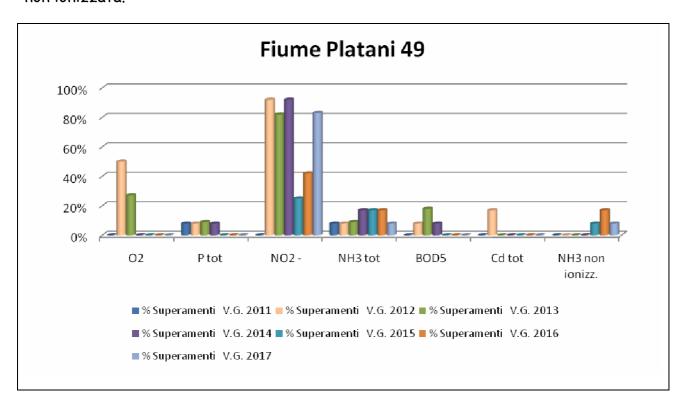
Tabella 3 - Confronto dati dal 2011 al 2017 Stazione "Fiume Platani - 170" (prov. AG) idonea alla vita delle specie "salmonicole"							
		- 170" (prov				salmonicole"	
2011	2012	2013	2014	2015	2016	2017	
Superamenti VG	Superamenti VG	Superamenti VG	Superamenti VG	Superamenti VG	Superamenti VG	Superamenti VG	
					NO ₂ - NH ₃		
		P _{tot} - NO ₂ -	BOD ₅ - P _{tot} -		non ionizz -	BOD ₅ - Ptot - NO ₂ -	
P _{tot} - NO ₂ -		NH₃ non	NO ₂ - NH ₃	NO ₂ - NH ₃	NH ₃ tot	NH ₃ non ionizz - NH ₃	
NH ₃ non ionizz	(O ₂) - P _{tot} -	ionizz - NH ₃	non ionizz -	non ionizz -	Tensioattivi	tot 8% Tensioattivi	
- NH ₃ tot.	NO ₂ -NH ₃ tot.	tot.	NH3 tot.	NH3 tot.	anionici	anionici	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VI	VI	VI	VI	VI	VI	VI	
Tmax - (O ₂) -	T						
V.M. materiale	Tmax - (O ₂) - V.M. materiale						
in sospensione - BOD ₅ - NO ₂ -	in						
NH ₃ non ionizz	sospensione		Tmax - (O ₂)-	Tmax - BOD ₅	Tmax - (O ₂) -		
- N	- BOD ₅ -	Tmax - (O ₂)-	BOD ₅ - NH ₃	- NH ₃ non	BOD ₅ - NH ₃		
ammoniacale -	NO ₂ - NH ₃	BOD ₅ - NH ₃	non ionizz -	ionizz - NH ₃	non ionizz -	Tmax - NO ₂ - NH ₃ non	
Zn	tot.	tot.	NH ₃ tot.	tot Cr	NH ₃ tot. –	ionizz - NH ₃ tot.	
Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità - D.Lgs.	
D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	152/06	
NO	NO	NO	NO	NO	NO	NO	
Stazione "Fi	ume Platani	- 49" (prov.	AG) idonea	alla vita del	lle specie "ci	prinicole"	
2011	2012	2013	2014	2015	2016	2017	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VG	VG	VG	VG	VG	VG	VG	
					V.M. Materiale		
					in		
	(O_2) - BOD_5 -				sospensione -		
V.M. materiale	P _{tot} - NO ₂ -	(O ₂) - P _{tot} -	P _{tot} - NO ₂ -		NO ₂ - NH ₃		
in sospensione	NH ₃ tot - Cd	NO ₂ - NH ₃ tot	NH ₃ tot -	NO ₂ - NH ₃ tot	non ionizz -	NO ₂ - NH ₃ non ionizz	
- P _{tot} - NH ₃ tot.	tot	- BOD ₅	BOD ₅	- BOD ₅	NH ₃ tot -	- NH ₃ tot.	
Superamenti VI	Superamenti VI	Superamenti VI	Superamenti VI	Superamenti VI	Superamenti VI	Superamenti VI	
VI	(O2) - V.M.	VI	VI	VI	VI	VI	
	materiale in						
BOD ₅ - NH ₃	sospensione –			Tmax - NH3			
non ionizz -	BOD ₅ - NH ₃			non ionizz -	BOD₅ - NH₃	NH ₃ non ionizz - NH ₃	
NH ₃ tot.– Zn	tot.	(O ₂) - BOD ₅	BOD₅	BOD ₅ .	tot -	tot.	
Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità - D.Lgs.	
D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	152/06	
NO	NO	NO	NO	NO	NO	NO	
Stazione "Fi	ume Anapo -	- 89" (prov	SR) idonea	alla vita dell	e specie "cir	prinicole"	
2011	2012	2013	2014	2015	2016	2017	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VG	VG	VG	VG	VG	VG	VG	
Idrocarburi di			Idrocarburi di				
origine			origine	NH3 tot -			
petrolifera ∑ C		,	petrolifera ∑ C	Tensioattivi	,		
> 12	NH ₃ tot.	/	> 12	(anionici)	/	P _{tot}	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VI	VI ,	VI ,	VI ,	VI ,	VI	VI	
Conformità -	/	/	/	/	/	Conformità -	
D.Lgs.	Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	D.Lgs.	
152/06	D.Lgs. 152/06	D.Lgs. 152/06		D.Lgs. 152/06	D.Lgs. 152/06		
. 52, 55	50. 102/00						

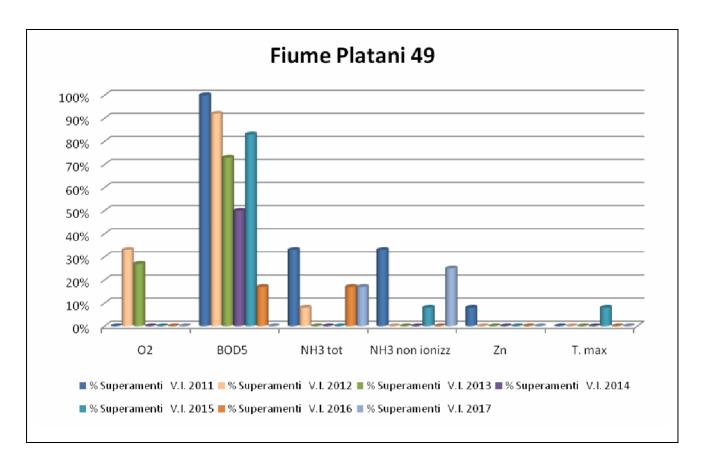
SI SI SI SI SI


Segue Tabella 3 - Confronto dati dal 2011 al 2017 Stazione "Fiume Ciane - 91" (prov. SR) idonea alla vita delle specie "ciprinicole"							
Stazione "Fi	ume Ciane - 1				cie "ciprinico	le"	
2011	2012	2013	2014	2015	2016	2017	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VG	VG	VG	VG	VG	VG	VG	
				BOD5 -			
				Tensioattivi		Ptot - NO2 -	
1	(O ₂)	(O_2) - NH_3 tot.	1	(anionici	/	NH ₃ tot	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VI	VI	VI	VI	VI	VI	VI	
	(O ₂)	(O ₂)	(O ₂)	(O ₂)			
			` '	` '			
(O ₂) - NH ₃ tot.					(O ₂)	(O ₂)	
Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	Conformità -	
D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	D.Lgs. 152/06	
NO	NO	NO	NO	NO	NO	NO	
Stazione "Fi	ume Simeto -	· 101" (prov.	CT) idonea all		pecie "salmo	nicole"	
2011	2012	2013	2014	2015	2016	2017	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
VG	VG	VG	VG	VG	VG	VG	
					V.M.		
	(O ₂) - V.M.				materiale in		
	materiale in	BOD5- P _{tot} -			sospensione -		
(O ₂) - BOD ₅ -	sospens P _{tot} -	Idroc. Petrol	BOD ₅ - P _{tot} -	V.M. materiale	BOD ₅ - P _{tot} -		
$P_{tot} - NO_2 -$	NO ₂ NH ₃ non	NH3 non ionizz	NO ₂ - NH ₃ non	in sospens	NO ₂ - NH ₃	pH – P _{tot} - 3	
NH ₃ non ionizz	ionizz - NH3 tot	- NH₃ tot - Cd	ionizz - NH ₃ tot		non ioniz	$NO_2 - NH_3$ tot	
- NH ₃ tot	- Cd tot.	tot.	- Hg tot.	NO2 - NH ₃ tot	NH ₃ tot - Cd	– Hg	
Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	Superamenti	
3 / I							
VI	VI	VI	VI	VI	VI	VI	
VI	Tmax - (O ₂) -	VI	VI	VI	VI	VI	
		Tmax - V.M.	VI	VI	VI	VI	
NH ₃ non ionizz	Tmax - (O ₂) -		VI	VI	VI	VI	
NH ₃ non ionizz –Cu	$Tmax - (O_2) - BOD_5 - NH_3$ $non ionizz -Zn$ tot	Tmax - V.M.	Tmax - BOD₅	/	BOD₅	Tmax	
NH ₃ non ionizz —Cu Conformità -	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità -	Tmax - V.M. materiale in sospens. Conformità -	Tmax - BOD₅ Conformità -	/ Conformità -	BOD ₅ Conformità -	Tmax Conformità -	
NH ₃ non ionizz –Cu	$Tmax - (O_2) - BOD_5 - NH_3$ $non ionizz -Zn$ tot	Tmax - V.M. materiale in sospens.	Tmax - BOD₅	/	BOD₅	Tmax Conformità -	
NH ₃ non ionizz —Cu Conformità -	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità -	Tmax - V.M. materiale in sospens. Conformità -	Tmax - BOD₅ Conformità -	/ Conformità -	BOD ₅ Conformità -	Tmax Conformità -	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06	Tmax - BOD₅ Conformità - D.Lgs. 152/06	/ Conformità - D.Lgs. 152/06	BOD ₅ Conformità - D.Lgs. 152/06	Tmax Conformità - D.Lgs. 152/06	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06	Tmax - BOD₅ Conformità - D.Lgs. 152/06 NO	/ Conformità - D.Lgs. 152/06 SI	BOD ₅ Conformità - D.Lgs. 152/06 NO	Tmax Conformità - D.Lgs. 152/06 NO	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned	Conformità - D.Lgs. 152/06 SI	BOD ₅ Conformità - D.Lgs. 152/06 NO	Tmax Conformità - D.Lgs. 152/06 NO	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014	Conformità - D.Lgs. 152/06 SI alla vita dell 2015	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017	
NH ₃ non ionizz -Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014	Conformità - D.Lgs. 152/06 SI alla vita dell 2015	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017	
NH ₃ non ionizz -Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG Ptot - NO ₂ -	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz -Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} -	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} -	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - Ptot -	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz -	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi —	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ tot -	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot -	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot -	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot - Cd	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd -	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - Ptot - NO ₂ - NH ₃ tot - Cd tot	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot - Cd - Hg	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ tot - Cd tot Superamenti	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - Ptot - NO ₂ - NH ₃ tot - Cd tot	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot - Cd - Hg	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M.	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ tot - Cd tot Superamenti	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ NH ₃ tot - Cd tot Superamenti VI	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG P _{tot} - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in sospens NH ₃	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - Ptot - NO ₂ NH ₃ tot - Cd tot Superamenti VI V.M. materiale	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI V.M. materiale	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI V.M. materiale	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale in sospensione	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG Ptot - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in sospens NH ₃ non ioniz –Zn	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ NH ₃ tot - Cd tot Superamenti VI V.M. materiale in sospens	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI V.M. materiale in sospens	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI V.M. materiale in sospens	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti VI	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale in sospensione 8% Zn	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG Ptot - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in sospens NH ₃ non ioniz —Zn tot —Cu	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ NH ₃ tot - Cd tot Superamenti VI V.M. materiale in sospens Cd tot	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti VI	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI V.M. materiale in sospens Cl _{tot}	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI V.M. materiale in sospens Cu - Pb - Cl _{tot}	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti VI Cltot	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale in sospensione 8% Zn 91%Cltot	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG Ptot - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in sospens NH ₃ non ioniz —Zn tot —Cu Conformità -	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ NH ₃ tot - Cd tot Superamenti VI V.M. materiale in sospens Cd tot Conformità -	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti VI	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO V. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI V.M. materiale in sospens Cl _{tot} Conformità -	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI V.M. materiale in sospens Cu - Pb - Cl _{tot} Conformità -	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti VI Cltot Conformità -	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale in sospensione 8% Zn 91%Cltot Conformità -	
NH ₃ non ionizz —Cu Conformità - D.Lgs. 152/06 NO Stazione "Fi 2011 Superamenti VG Ptot - NO ₂ - NH ₃ tot tensioattivi — Cd Superamenti VI Tmax - V.M. materiale in sospens NH ₃ non ioniz —Zn tot —Cu	Tmax - (O ₂) - BOD ₅ - NH ₃ non ionizz –Zn tot Conformità - D.Lgs. 152/06 NO ume Alcantar 2012 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ NH ₃ tot - Cd tot Superamenti VI V.M. materiale in sospens Cd tot	Tmax - V.M. materiale in sospens. Conformità - D.Lgs. 152/06 NO a - 118" (pro 2013 Superamenti VG V.M. materiale in sospensione - BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH ₃ tot- tensioattivi Superamenti VI	Tmax - BOD ₅ Conformità - D.Lgs. 152/06 NO v. ME) idoned 2014 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz Superamenti VI V.M. materiale in sospens Cl _{tot}	Conformità - D.Lgs. 152/06 SI alla vita dell 2015 Superamenti VG BOD ₅ - P _{tot} - NO ₂ - NH ₃ non ioniz - NH3 tot - Cd - Hg Superamenti VI V.M. materiale in sospens Cu - Pb - Cl _{tot}	BOD ₅ Conformità - D.Lgs. 152/06 NO e specie "sa 2016 Superamenti VG Ptot - NO ₂ - NH ₃ tot - Cd - Hg Superamenti VI Cltot	Tmax Conformità - D.Lgs. 152/06 NO Imonicole" 2017 Superamenti VG Ptot - NO ₂ - NH ₃ non ioniz - NH ₃ tot - Cd - Hg Superamenti VI V.M. materiale in sospensione 8% Zn 91%Cltot	

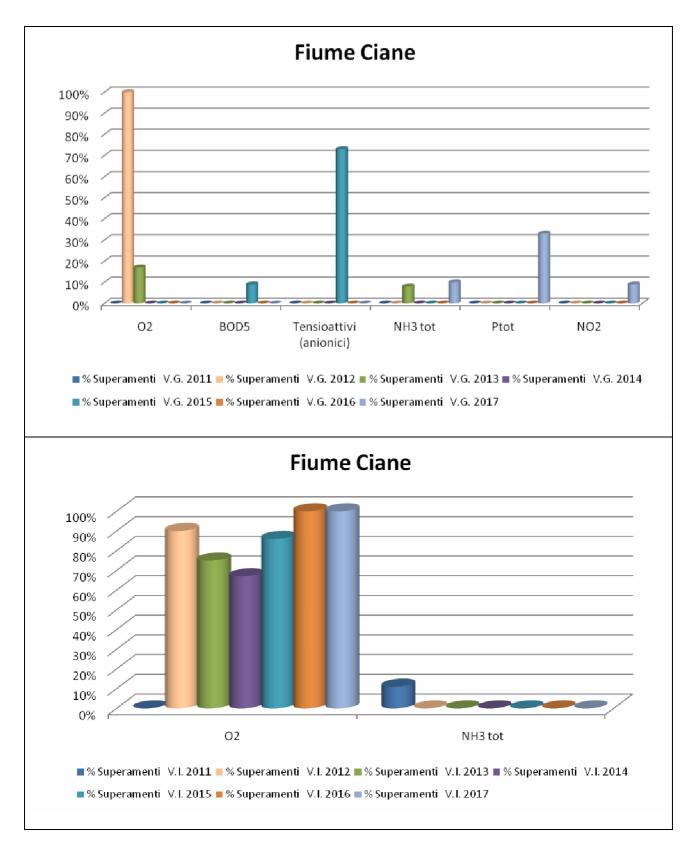

Legenda: VI = valori Imperativi; VG = valori Guida; V.M. = valore medio

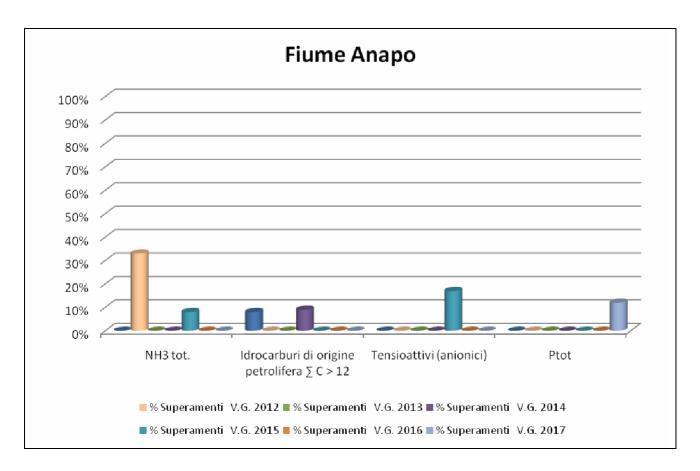
Di seguito vengono riportati gli istogrammi della percentuale di superamenti dei valori Guida e dei valori Imperativi dei parametri non conformi dal 2011 al 2017 per ogni corpo idrico, da cui si evince:

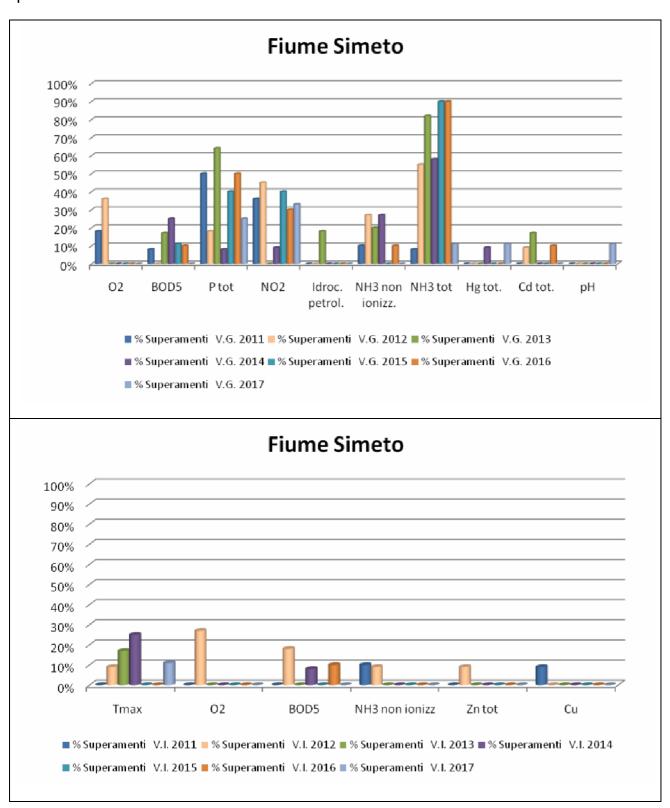

- nella stazione 170 del fiume Platani un andamento pressoché costante per la percentuale di superamenti dei valori imperativi di ammoniaca non ionizzata e temperatura max, nonché un nuovo superamento del valore imperativo dei nitriti;

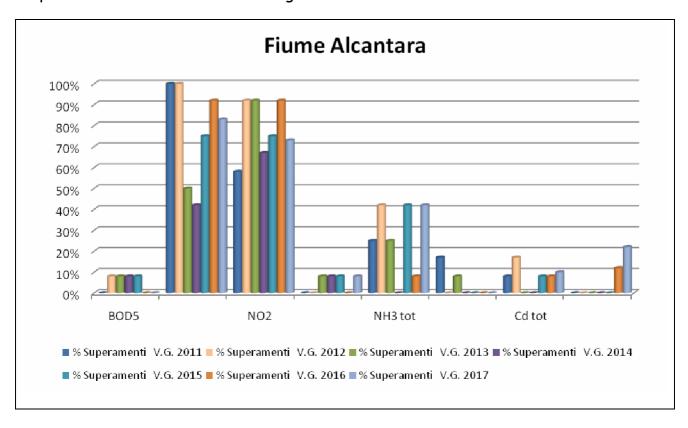


- nella stazione 49 del fiume Platani un andamento altalenante nel tempo per la percentuale di superamenti dei valori imperativi di ammoniaca totale ed ammoniaca non ionizzata.

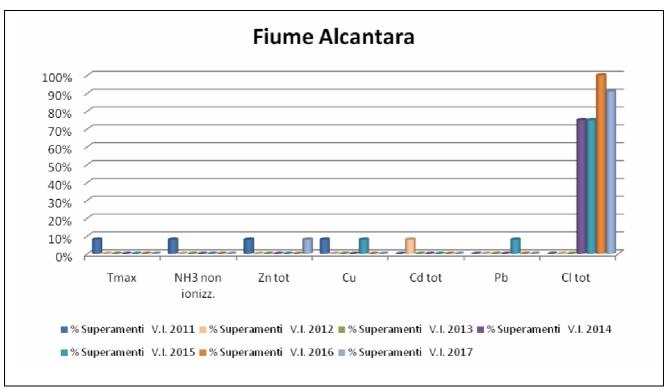



- nella stazione del fiume Ciane un elevato e costante superamento del valore Imperativo di ossigeno disciolto


- nella stazione del fiume Anapo un modesto ed unico solo superamento del valore guida di fosforo totale rilevato nel 2017



- nella stazione del fiume Simeto, si è registrato nel 2017 un superamento del valore imperativo per la temperatura massima, che presenta un andamento altalenante nel periodo 2011-2017;



- nella stazione del fiume Alcantara, negli ultimi quattro anni, un significativo superamento della percentuale del valore imperativo di Cloro residuo totale (seppur in diminuzione rispetto all'anno precedente) nonché un nuovo superamento del valore imperativo dello Zinco che non si registrava dal 2011.

Le figure n.3 e n.4 sintetizzano l'andamento delle conformità dal 2011 al 2017 da cui si evince complessivamente un andamento pressoché costante di non conformità per ogni stazione ad eccezione di quella del fiume Anapo.

Figura 3 - Andamento della conformità delle stazioni dei corpi idrici delle acque idonee alla vita dei pesci

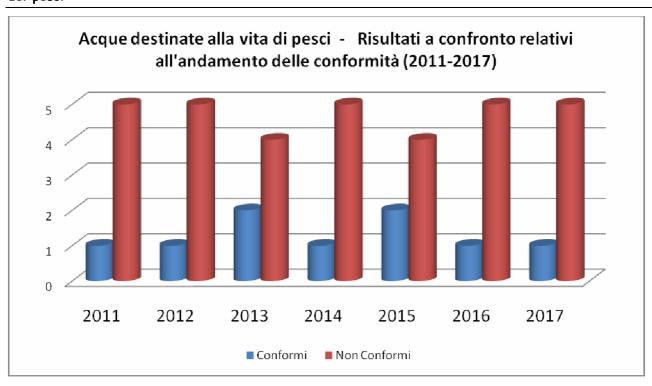
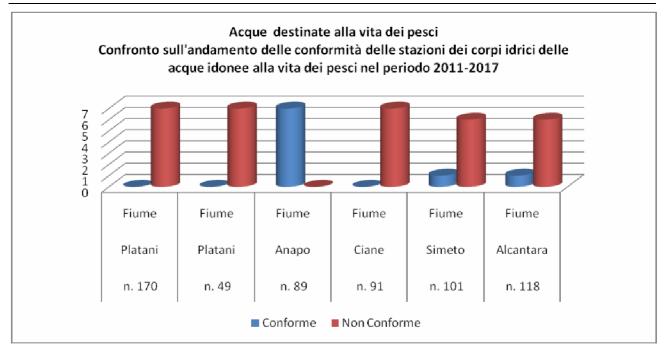



Figura 4 - Confronto sull'andamento delle conformità delle stazioni dei corpi idrici delle acque idonee alla vita dei pesci nel periodo 2011-2017

In conclusione, si auspica che la Regione Siciliana ed in particolare l'Autorità di Bacino, appena istituita dall'art 3 comma 6 della L.R. n.8/2018, ridefinisca la rete di monitoraggio delle stazioni delle acque superficiali destinate alla vita dei pesci al fine di rivalutare quali corpi idrici presentano habitat idonei ad accogliere comunità ittiche di salmonidi e ciprinidi. Inoltre per tutte le acque in cui è stata riscontrata una situazione di non conformità, sulla base dei risultati dei monitoraggi e dell'analisi delle pressioni, quasi sempre individuate negli scarichi depurati e non e nelle pressioni diffuse di origine agricola, è urgente attuare gli interventi di risanamento, come previsto al comma 3 dell'art. 79 del D.Lgs. 152/06.